linear diffusion - перевод на русский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

linear diffusion - перевод на русский

PROPERTIES OF THE OPERATION OF A SECURE CIPHER IDENTIFIED BY CLAUDE SHANNON IN HIS 1945 CLASSIFIED REPORT A MATHEMATICAL THEORY OF CRYPTOGRAPHY
Diffusion (cryptography); Confusion (cryptography); Diffusion and confusion; Linear diffusion
Найдено результатов: 1170
linear diffusion         

математика

линейная диффузия

diffusion welding         
  • Animation of the Diffusion Welding process
  • Animation of sheet forming process using diffusion welding (see also [[hydroforming]]).
  • Animation of Diffusion Bonding Process
Diffusion welding; User:IdRatherBeLearning/sandbox

общая лексика

диффузионная сварка

linear transformation         
  • The function f:\R^2 \to \R^2 with f(x, y) = (2x, y) is a linear map. This function scales the x component of a vector by the factor 2.
  • The function f(x, y) = (2x, y) is additive: It doesn't matter whether vectors are first added and then mapped or whether they are mapped and finally added: f(\mathbf a + \mathbf b) = f(\mathbf a) + f(\mathbf b)
  • The function f(x, y) = (2x, y) is homogeneous: It doesn't matter whether a vector is first scaled and then mapped or first mapped and then scaled: f(\lambda \mathbf a) = \lambda f(\mathbf a)
MAPPING THAT PRESERVES THE OPERATIONS OF ADDITION AND SCALAR MULTIPLICATION
Linear operator; Linear mapping; Linear transformations; Linear operators; Linear transform; Linear maps; Linear isomorphism; Linear isomorphic; Linear Transformation; Linear Transformations; Linear Operator; Homogeneous linear transformation; User:The Uber Ninja/X3; Linear transformation; Bijective linear map; Nonlinear operator; Linear Schrödinger Operator; Vector space homomorphism; Vector space isomorphism; Linear extension of a function; Linear extension (linear algebra); Extend by linearity; Linear endomorphism

['liniətrænsfə'meiʃ(ə)n]

общая лексика

линейное преобразование

linear mapping         
  • The function f:\R^2 \to \R^2 with f(x, y) = (2x, y) is a linear map. This function scales the x component of a vector by the factor 2.
  • The function f(x, y) = (2x, y) is additive: It doesn't matter whether vectors are first added and then mapped or whether they are mapped and finally added: f(\mathbf a + \mathbf b) = f(\mathbf a) + f(\mathbf b)
  • The function f(x, y) = (2x, y) is homogeneous: It doesn't matter whether a vector is first scaled and then mapped or first mapped and then scaled: f(\lambda \mathbf a) = \lambda f(\mathbf a)
MAPPING THAT PRESERVES THE OPERATIONS OF ADDITION AND SCALAR MULTIPLICATION
Linear operator; Linear mapping; Linear transformations; Linear operators; Linear transform; Linear maps; Linear isomorphism; Linear isomorphic; Linear Transformation; Linear Transformations; Linear Operator; Homogeneous linear transformation; User:The Uber Ninja/X3; Linear transformation; Bijective linear map; Nonlinear operator; Linear Schrödinger Operator; Vector space homomorphism; Vector space isomorphism; Linear extension of a function; Linear extension (linear algebra); Extend by linearity; Linear endomorphism

математика

линейное отображение

linear operator         
  • The function f:\R^2 \to \R^2 with f(x, y) = (2x, y) is a linear map. This function scales the x component of a vector by the factor 2.
  • The function f(x, y) = (2x, y) is additive: It doesn't matter whether vectors are first added and then mapped or whether they are mapped and finally added: f(\mathbf a + \mathbf b) = f(\mathbf a) + f(\mathbf b)
  • The function f(x, y) = (2x, y) is homogeneous: It doesn't matter whether a vector is first scaled and then mapped or first mapped and then scaled: f(\lambda \mathbf a) = \lambda f(\mathbf a)
MAPPING THAT PRESERVES THE OPERATIONS OF ADDITION AND SCALAR MULTIPLICATION
Linear operator; Linear mapping; Linear transformations; Linear operators; Linear transform; Linear maps; Linear isomorphism; Linear isomorphic; Linear Transformation; Linear Transformations; Linear Operator; Homogeneous linear transformation; User:The Uber Ninja/X3; Linear transformation; Bijective linear map; Nonlinear operator; Linear Schrödinger Operator; Vector space homomorphism; Vector space isomorphism; Linear extension of a function; Linear extension (linear algebra); Extend by linearity; Linear endomorphism

математика

линейный оператор

nonlinear operator         
  • The function f:\R^2 \to \R^2 with f(x, y) = (2x, y) is a linear map. This function scales the x component of a vector by the factor 2.
  • The function f(x, y) = (2x, y) is additive: It doesn't matter whether vectors are first added and then mapped or whether they are mapped and finally added: f(\mathbf a + \mathbf b) = f(\mathbf a) + f(\mathbf b)
  • The function f(x, y) = (2x, y) is homogeneous: It doesn't matter whether a vector is first scaled and then mapped or first mapped and then scaled: f(\lambda \mathbf a) = \lambda f(\mathbf a)
MAPPING THAT PRESERVES THE OPERATIONS OF ADDITION AND SCALAR MULTIPLICATION
Linear operator; Linear mapping; Linear transformations; Linear operators; Linear transform; Linear maps; Linear isomorphism; Linear isomorphic; Linear Transformation; Linear Transformations; Linear Operator; Homogeneous linear transformation; User:The Uber Ninja/X3; Linear transformation; Bijective linear map; Nonlinear operator; Linear Schrödinger Operator; Vector space homomorphism; Vector space isomorphism; Linear extension of a function; Linear extension (linear algebra); Extend by linearity; Linear endomorphism

математика

нелинейный оператор

linear endomorphism         
  • The function f:\R^2 \to \R^2 with f(x, y) = (2x, y) is a linear map. This function scales the x component of a vector by the factor 2.
  • The function f(x, y) = (2x, y) is additive: It doesn't matter whether vectors are first added and then mapped or whether they are mapped and finally added: f(\mathbf a + \mathbf b) = f(\mathbf a) + f(\mathbf b)
  • The function f(x, y) = (2x, y) is homogeneous: It doesn't matter whether a vector is first scaled and then mapped or first mapped and then scaled: f(\lambda \mathbf a) = \lambda f(\mathbf a)
MAPPING THAT PRESERVES THE OPERATIONS OF ADDITION AND SCALAR MULTIPLICATION
Linear operator; Linear mapping; Linear transformations; Linear operators; Linear transform; Linear maps; Linear isomorphism; Linear isomorphic; Linear Transformation; Linear Transformations; Linear Operator; Homogeneous linear transformation; User:The Uber Ninja/X3; Linear transformation; Bijective linear map; Nonlinear operator; Linear Schrödinger Operator; Vector space homomorphism; Vector space isomorphism; Linear extension of a function; Linear extension (linear algebra); Extend by linearity; Linear endomorphism

математика

линейный эндоморфизм

linear mapping         
  • The function f:\R^2 \to \R^2 with f(x, y) = (2x, y) is a linear map. This function scales the x component of a vector by the factor 2.
  • The function f(x, y) = (2x, y) is additive: It doesn't matter whether vectors are first added and then mapped or whether they are mapped and finally added: f(\mathbf a + \mathbf b) = f(\mathbf a) + f(\mathbf b)
  • The function f(x, y) = (2x, y) is homogeneous: It doesn't matter whether a vector is first scaled and then mapped or first mapped and then scaled: f(\lambda \mathbf a) = \lambda f(\mathbf a)
MAPPING THAT PRESERVES THE OPERATIONS OF ADDITION AND SCALAR MULTIPLICATION
Linear operator; Linear mapping; Linear transformations; Linear operators; Linear transform; Linear maps; Linear isomorphism; Linear isomorphic; Linear Transformation; Linear Transformations; Linear Operator; Homogeneous linear transformation; User:The Uber Ninja/X3; Linear transformation; Bijective linear map; Nonlinear operator; Linear Schrödinger Operator; Vector space homomorphism; Vector space isomorphism; Linear extension of a function; Linear extension (linear algebra); Extend by linearity; Linear endomorphism
линейное отображение
diffuse         
  • Diffusion furnaces used for [[thermal oxidation]]
  • Diffusion in the monolayer: oscillations near temporary equilibrium positions and jumps to the nearest free places.
  • Diffusion from a microscopic and  b macroscopic point of view. Initially, there are [[solute]] molecules on the left side of a barrier (purple line) and none on the right. The barrier is removed, and the solute diffuses to fill the whole container. <u>Top:</u> A single molecule moves around randomly. <u>Middle:</u> With more molecules, there is a statistical trend that the solute fills the container more and more uniformly. <u>Bottom:</u> With an enormous number of solute molecules, all randomness is gone: The solute appears to move smoothly and deterministically from high-concentration areas to low-concentration areas. There is no microscopic [[force]] pushing molecules rightward, but there ''appears'' to be one in the bottom panel. This apparent force is called an ''[[entropic force]]''.
  • Time lapse video of diffusion of a dye dissolved in water into a gel.
  • The apparent random motion of atoms, ions or molecules explained. Substances appear to move randomly due to collisions with other substances. From the iBook ''Cell Membrane Transport'', free license granted by IS3D, LLC, 2014.
  • Random collisions of particles in a gas.
NET MOVEMENT OF MOLECULES OR ATOMS FROM A REGION OF HIGH CONCENTRATION (OR HIGH CHEMICAL POTENTIAL) TO A REGION OF LOW CONCENTRATION (OR LOW CHEMICAL POTENTIAL)
Diffuse; Diffusion rate; Rate of diffusion; Diffusibility; Heterogenous diffusion
1) распространяться (напр. о нововведениях)
2) растрачивать, расходовать
diffuse         
  • Diffusion furnaces used for [[thermal oxidation]]
  • Diffusion in the monolayer: oscillations near temporary equilibrium positions and jumps to the nearest free places.
  • Diffusion from a microscopic and  b macroscopic point of view. Initially, there are [[solute]] molecules on the left side of a barrier (purple line) and none on the right. The barrier is removed, and the solute diffuses to fill the whole container. <u>Top:</u> A single molecule moves around randomly. <u>Middle:</u> With more molecules, there is a statistical trend that the solute fills the container more and more uniformly. <u>Bottom:</u> With an enormous number of solute molecules, all randomness is gone: The solute appears to move smoothly and deterministically from high-concentration areas to low-concentration areas. There is no microscopic [[force]] pushing molecules rightward, but there ''appears'' to be one in the bottom panel. This apparent force is called an ''[[entropic force]]''.
  • Time lapse video of diffusion of a dye dissolved in water into a gel.
  • The apparent random motion of atoms, ions or molecules explained. Substances appear to move randomly due to collisions with other substances. From the iBook ''Cell Membrane Transport'', free license granted by IS3D, LLC, 2014.
  • Random collisions of particles in a gas.
NET MOVEMENT OF MOLECULES OR ATOMS FROM A REGION OF HIGH CONCENTRATION (OR HIGH CHEMICAL POTENTIAL) TO A REGION OF LOW CONCENTRATION (OR LOW CHEMICAL POTENTIAL)
Diffuse; Diffusion rate; Rate of diffusion; Diffusibility; Heterogenous diffusion
diffuse 1. adj. 1) рассеянный (о свете и т. п.) 2) распространенный, разбросанный 3) многословный, расплывчатый Syn: see verbose 2. v. 1) рассеивать (свет, тепло и т. п.) 2) распространять to diffuse learning/knowledge - распространять знания 3) распылять; рассыпать, разбрасывать 4) phys. диффундировать (о газах и жидкостях) Syn: see scatter

Определение

linear map
<mathematics> (Or "linear transformation") A function from a vector space to a vector space which respects the additive and multiplicative structures of the two: that is, for any two vectors, u, v, in the source vector space and any scalar, k, in the field over which it is a vector space, a linear map f satisfies f(u+kv) = f(u) + kf(v). (1996-09-30)

Википедия

Confusion and diffusion

In cryptography, confusion and diffusion are two properties of the operation of a secure cipher identified by Claude Shannon in his 1945 classified report A Mathematical Theory of Cryptography. These properties, when present, work together to thwart the application of statistics and other methods of cryptanalysis.

Confusion in a symmetric cipher is obscuring the local correlation between the input (plaintext) and output (ciphertext) by varying the application of the key to the data, while diffusion is hiding the plaintext statistics by spreading it over a larger area of ciphertext. Although ciphers can be confusion-only (substitution cipher, one-time pad) or diffusion-only (transposition cipher), any "reasonable" block cipher uses both confusion and diffusion. These concepts are also important in the design of cryptographic hash functions and pseudorandom number generators where decorrelation of the generated values is the main feature.

Как переводится linear diffusion на Русский язык